Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 16(9): 5647-51, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27472285

RESUMO

The emergence of complex new ground states at interfaces has been identified as one of the most promising routes to highly tunable nanoscale materials. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains among the most challenging materials physics problems to date. In particular, generating ferromagnetism localized at the interface of two nonferromagnetic materials is of fundamental and technological interest. Moreover, the ability to turn the ferromagnetism on and off would shed light on the origin of such emergent phenomena and is promising for spintronic applications. We demonstrate that ferromagnetism confined within one unit cell at the interface of CaRuO3 and CaMnO3 can be switched on and off by changing the symmetry of the oxygen octahedra connectivity at the boundary. Interfaces that are symmetry-matched across the boundary exhibit interfacial CaMnO3 ferromagnetism while the ferromagnetism at symmetry-mismatched interfaces is suppressed. We attribute the suppression of ferromagnetic order to a reduction in charge transfer at symmetry-mismatched interfaces, where frustrated bonding weakens the orbital overlap. Thus, interfacial symmetry is a new route to control emergent ferromagnetism in materials such as CaMnO3 that exhibit antiferromagnetism in bulk form.

2.
Phys Rev Lett ; 115(4): 047601, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252708

RESUMO

New mechanisms for achieving direct electric field control of ferromagnetism are highly desirable in the development of functional magnetic interfaces. To that end, we have probed the electric field dependence of the emergent ferromagnetic layer at CaRuO_{3}/CaMnO_{3} interfaces in bilayers fabricated on SrTiO_{3}. Using polarized neutron reflectometry, we are able to detect the ferromagnetic signal arising from a single atomic monolayer of CaMnO_{3}, manifested as a spin asymmetry in the reflectivity. We find that the application of an electric field of 600 kV/m across the bilayer induces a significant increase in this spin asymmetry. Modeling of the reflectivity suggests that this increase corresponds to a transition from canted antiferromagnetism to full ferromagnetic alignment of the Mn^{4+} ions at the interface. This increase from 1 µ_{B} to 2.5-3.0 µ_{B} per Mn is indicative of a strong magnetoelectric coupling effect, and such direct electric field control of the magnetization at an interface has significant potential for spintronic applications.

3.
Nature ; 407(6802): 377-82, 2000 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-11014193

RESUMO

Severe dietary restriction, catabolic states and even short-term caloric deprivation impair fertility in mammals. Likewise, obesity is associated with infertile conditions such as polycystic ovary syndrome. The reproductive status of lower organisms such as Caenorhabditis elegans is also modulated by availability of nutrients. Thus, fertility requires the integration of reproductive and metabolic signals. Here we show that deletion of insulin receptor substrate-2 (IRS-2), a component of the insulin/insulin-like growth factor-1 signalling cascade, causes female infertility. Mice lacking IRS-2 have small, anovulatory ovaries with reduced numbers of follicles. Plasma concentrations of luteinizing hormone, prolactin and sex steroids are low in these animals. Pituitaries are decreased in size and contain reduced numbers of gonadotrophs. Females lacking IRS-2 have increased food intake and obesity, despite elevated levels of leptin. Our findings indicate that insulin, together with leptin and other neuropeptides, may modulate hypothalamic control of appetite and reproductive endocrinology. Coupled with findings on the role of insulin-signalling pathways in the regulation of fertility, metabolism and longevity in C. elegans and Drosophila, we have identified an evolutionarily conserved mechanism in mammals that regulates both reproduction and energy homeostasis.


Assuntos
Fosfoproteínas/fisiologia , Receptor de Insulina/fisiologia , Reprodução/fisiologia , Animais , Ingestão de Energia , Metabolismo Energético , Estro , Feminino , Fertilidade/fisiologia , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/farmacologia , Homeostase , Infertilidade , Insulina/fisiologia , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Leptina/sangue , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/citologia , Fosfoproteínas/genética , Hipófise/anatomia & histologia , Transdução de Sinais , Esteroides/sangue , Esteroides/farmacologia
4.
Nat Genet ; 23(1): 32-40, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10471495

RESUMO

Insulin receptor substrates (Irs proteins) mediate the pleiotropic effects of insulin and Igf-1 (insulin-like growth factor-1), including regulation of glucose homeostasis and cell growth and survival. We intercrossed mice heterozygous for two null alleles (Irs1+/- and Irs2+/-) and investigated growth and glucose metabolism in mice with viable genotypes. Our experiments revealed that Irs-1 and Irs-2 are critical for embryonic and post-natal growth, with Irs-1 having the predominant role. By contrast, both Irs-1 and Irs-2 function in peripheral carbohydrate metabolism, but Irs-2 has the major role in beta-cell development and compensation for peripheral insulin resistance. To establish a role for the Igf-1 receptor in beta-cells, we intercrossed mice heterozygous for null alleles of Igf1r and Irs2. Our results reveal that Igf-1 receptors promote beta-cell development and survival through the Irs-2 signalling pathway. Thus, Irs-2 integrates the effects of insulin in peripheral target tissues with Igf-1 in pancreatic beta-cells to maintain glucose homeostasis.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Fatores Etários , Animais , Apoptose , Glicemia/análise , Peso Corporal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Teste de Tolerância a Glucose , Insulina/sangue , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...